Design and Build of Electronic-Based Cessna 172 Aircraft Fuel System Simulator
Reza*, Eko Setijono, Ajeng Wulansari

Politeknik Penerbangan Surabaya, Jalan Jemur Andayani I No 73, Kota Surabaya, 60236
*Corresponding Author. Email: rrezza27@gmail.com

Abstract
Airplanes need a system that can control the distribution of fuel in each operation so that the resulting fuel supply is stable. Based on the research results of Edgar Dale (1969), 90% of a person has the ability to absorb objects of knowledge by doing. This final project discusses the design and manufacture of a fuel flow simulator for an aircraft fuel system using LED lights as a substitute for fuel. This final project aims to design and create a fuel flow simulator for an aircraft fuel system as an alternative learning medium. There are two methods used in completing this Final Project, namely analytical and experimental methods which consist of several stages including problem identification, data collection, tool design, tool design, and tool testing. The results showed that with the Design and Build of the Electronic-Based Cessna 172 Aircraft Fuel System Simulator, where the value of cadets when learning using simulation tools has increased compared to without using tools. It can be concluded that this fuel system simulation tool can scientifically increase the value and understanding of cadets, especially material about fuel systems.

Keyword: Manufacturing, Fuel System, Simulator

INTRODUCTION
Aircraft have engines that function to produce thrust. Therefore, aircraft require a stable fuel supply in each operation, so a system is needed to regulate the distribution of fuel from the tank to the engine, which is called the fuel system.

(P. Jannus et al, 2019) In the learning process of the Aircraft system course, the Fuel system material is one of the materials that is considered quite complicated to understand in detail and the absence of learning media such as fuel system simulators. (Arimanda, moch reza, 2019) exists when an airplane is in the air, the movement of the aircraft affects the movement of the fuel in the fuel tank. Because there are no tools or simulators for learning media as part of gaining practical knowledge by looking directly at the work process of the movement of fuel on airplanes, especially in rolling movements. The fuel distribution system in aircraft is very vital, for this reason a simulator is needed to better understand this.

Based on research conducted by Edgar Dale (1969), there are several differences in a person's absorption in absorbing learning outcomes, including: 10% by reading, 20% by listening, 30% by seeing, 50% by seeing and hearing, 70% by saying, then 90% by doing. Meanwhile, in studying the piston engine subject, there is material on the Fuel System which is important for Surabaya Aviation Polytechnic cadets to study and understand the fuel system in aircraft. Therefore, the learning method using visual aids can be an alternative to support the learning process.

METHODS
This research was conducted at the Surabaya Aviation Polytechnic from November 2022 to March 2023. In this study, it was carried out by following a previously designed flow.

Design
The use of this design is used for cadets who will carry out practical activities with engine fuel system material so that when operating the simulator they can understand exactly how fuel flow is distributed.
How the tool works

This tool is a Fuel System Simulator on a Cessna 172 Airplane which will demonstrate several processes in distributing fuel burn on the plane.

1. Fuel is in the fuel tank (right and left). The fuel in this tool is in the form of an LED light.

2. When the power button is on, the fuel light in the tank will light up. The fuel pump switch is turned on to pump fuel from the tank, the fuel flow uses the LED light.

3. Then the fuel is pumped using the auxiliary fuel pump, the fuel will pass through the selector valve, the selector valve has 3 positions namely left, right, bolt.

In the left position, fuel is only taken from the left tank, in the right position fuel is only taken from the right tank, and in normal operation the fuel selector is in both positions which allows fuel from the left and right tanks to be sent to the engine.

4. Then after the fuel passes through the selector valve, the fuel will enter the fuel reservoir tank which functions as a fuel storage used for engine operations on airplanes when the plane tilts right or left.

5. Fuel will pass through the Auxiliary fuel pump, the main function of the booster pump namely supply fuel at engine start. Primary fuel allows fuel to be injected directly into the cylinder before starting the engine.

6. Then the fuel will pass through the fuel shutoff valve which functions to turn off the fuel system (pump) when an emergency occurs. During an emergency, the fuel shutoff valve switch is turned on, stopping the flow of fuel.

7. Fuel will pass through the fuel strainer to filter out impurities in the fuel.

8. Drain valves on Cessna aircraft are used to drain accumulated steam from the tanks and to drain the fuel from the tanks that remains after defueling.

9. Engine driven fuel pump functions to provide fuel continuously with the right pressure while the engine is operating.

10. Fuel passes through the fuel distribution valve as a backflow barrier and controls the remaining pressure of fuel in the fuel pipe.

11. Then finally the Fuel flowmeter indicator functions to determine fuel consumption while the engine is working.

Test technique

Testing of this fuel system simulation tool was carried out at the Surabaya Aviation Polytechnic general workshop hangar with the following procedure: The test was carried out using fuel system simulation props on an electronic-based Cessna 172 aircraft. Testing is divided into three stages, namely:

a) The first stage Cadets or students are given learning and training about the fuel system on the Cessna 172 aircraft, especially on the material on the Cessna 172 fuel system without using media props.

b) The second stage of the cadets or students is given learning and training about the fuel system on the Cessna 172 aircraft. Especially on the material on the Cessna 172 fuel system using teaching aids that are made.

c) The third stage is validation of the results taken from the design and design results, whether the fuel system simulator tool is working according to instructions or not.
After testing, cadets or students are given a written test and fill out a questionnaire related to their understanding of the fuel system on aircraft Cessna 172. Testing was carried out before using teaching aids and after using teaching aids as learning media for comparison.

Data Analysis Techniques

The data analysis carried out was to compare the data obtained from the test results related to the effect of using visual aids as a learning tool. The comparison used is the absorption of understanding of fuel system material, especially on the Cessna 172 aircraft fuel system material. When using teaching aids it is compared to not using teaching aids. For calculating quantitative data using the formula mean / average value given between learning that uses teaching aids and those that do not. The formula used is as follows:

\[
\text{Mean} = \frac{1}{n} (x_1 + x_2 + \ldots + x_n)
\]

Information:
- \(n\) : number of samples
- \(x\) : sample value
- \(x_n\) : sample value to \(n\)

Data analysis or result validation is also taken from the design and design results, whether the fuel system simulator tool is working according to instructions or not, and there are problems in its operation or not.
RESULTS

Tool making

1. Prepare the tools and materials needed. So the first step in the process of making this tool is to prepare the tools and materials that will be used in the manufacturing process.

2. Design stickers with software then print. Then the second step is to make a sticker design and then the sticker is affixed to the acrylic, then attach the bracket/pangkon to the acrylic section of the suitcase.

3. Assemble or install electrical parts. Then the next step is to assemble or install electrical parts or connect cables from one component to another according to the wiring diagram.

4. Tool testing, according to the requested concept. The next step is the trial or testing stage of the tool, whether the tool is working according to the concept or is there trouble.

5. Install led strip

Then the LED strip lights are installed on the acrylic section at the top or display.

6. Install button and switch

The next stage is to install or install the switch, where there are 4 switches namely power, selector valve, shut-off valve, and fuel pump.

7. Tidy up starting from cables, electrical and mechanical systems

Then the next stage is the finishing stage, tidying up all cables, electrical and mechanical systems, and then the last is testing the entire system after all components and cables have been tidied up.

Results And Discussion

The results of the research on testing the fuel system simulator were obtained from a comparison of the data obtained from the test results related to the effect of using visual aids as a learning tool. The comparison used is the absorption of understanding of the fuel system material, especially on the Cessna 172 aircraft fuel system material. When using teaching aids compared to not using teaching aids.

For calculating quantitative data using the formula mean / average value given between learning that uses teaching aids and those that do not.

\[Mean = \frac{1}{n}(x_1 + x_2 + \ldots + x_n) \]

Information:

\(n \) : number of samples
\(x \) : sample value
\(x_n \) : sample value to-\(n \)

3.1.1 The data obtained from learning without using a simulator tool

Data was taken on Tuesday 13 March 2023 with the following data:

Number of samples (all levels 1): 22

\[Mean \approx \frac{1}{22}(66+69+64+72+43+31+33+45+53+62+68+47) = 5.04 \]

The average value of cadets when learning the fuel system without using Data yang di dapatkan dari pembelajaran dengan menggunakan alat simulator tools display is 5.04

3.1.2 The data obtained from learning by using a simulator tool

Data was taken on Friday 17 March 2023 with the following data:

Number of samples (all levels 1): 22

\[Mean \approx \frac{1}{22}(65+72+78+83+75+78+50+10+10+9+5+9+10) = 8.40 \]
The average value of cadets when learning the fuel system using visual aids is 8.40.

Based on the results of a comparison of the values of cadets when using tools without using props, it is very influential. Where the average value of cadets when learning the fuel system without using tools is 5.04 while the average value of cadets when learning the fuel system using a tool of 8.40.

In testing the fuel system simulator, it is obtained from testing whether the fuel system simulator tool has worked according to instructions or not, and there are problems in its operation or not. the following data is obtained:

Table 3.1 Data hasil pengujian alat

<table>
<thead>
<tr>
<th>NO</th>
<th>RANCANGAN</th>
<th>KONDISI</th>
<th>HASIL</th>
<th>CATATAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fuel berada pada fuel tank (right and left). Fuel dalam aktif ini berupa lampu LED.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Tombol power di on main lampu fuel dalam tank atau menyala.</td>
<td>Buka</td>
<td>Sewan</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Switch booster pump di on kena untuk menguasai fuel dari tank, alat de menguasai lampu LED.</td>
<td>Buka</td>
<td>Sewan</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Kedua, fuel di pump menggunakan auxiliary fuel pump, fuel akan muncul selector valve. selector valve memiliki 3 posisi yaitu left, right, bolt. Pada posisi left, fuel harus di bawah dan tank, pada posisi right fuel hanya disebabkan dari tank kiri, dan dalam operasi normal selector baik dalam dan speed position yang menyumbangkan dengan tank dari tank kiri dan komponen ke mesin fuel di bawah dari tank kiri dan komon.</td>
<td>Buka</td>
<td>Sewan</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Kedua, selector fuel menggunakan selector valve, fuel akan muncul ke fuel reservoir tank yang berfungsi sebagai pengatur fuel yang digunakan untuk operasi engine pada posisi terbaik pada saat posisi terbaik kemudian membagi ke tanki.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Fuel simulator auxiliary fuel pump. fungsi untuk dan booster pump yaitu menguasai fuel pada saat start engine. bagian basic primer menyumbangkan bagian basic untuk demikian membagi ke dalam sistem sebelum masuk ke tanki.</td>
<td>Buka</td>
<td>Sewan</td>
<td>-</td>
</tr>
</tbody>
</table>

Based on table 3.1, in step 2 when the power button is turned on, the fuel light in the tank will light up normally as desired.

In step 3 the booster pump switch is turned on to pump fuel from the tank, the fuel flow using the LED lights runs normally according to which are desired.

In step 4, the fuel is pumped using the auxiliary fuel pump, the fuel will pass through the selector valve, the selector valve has 3 positions namely left, right, bolt. In the left position, fuel is only taken from the left tank, in the right position fuel is only taken from the right tank, and in normal operation the fuel selector is on both position which allows fuel from the left and right tanks to be sent to the engine. fuel is taken from the left and right tanks running normally as desired.

In step 7 the fuel will pass through the fuel shut-off valve which functions to turn off the fuel system (pump) when an emergency occurs. During an emergency, the fuel shut-off valve switch is turned on, stopping the fuel flow from running normally as desired.
In step 10 the switch engine driven fuel pump is turned on to provide fuel continuously at the right pressure as long as the engine operates normally as desired.

DISCUSSION

After a series of experimental procedures and analysis of the research data, conclusions can be drawn.

1. With this simulator, learning the fuel system becomes easier to practice.
2. This series of simulators is more effective than using learning just by imagining how aircraft fuel is distributed from the tanks to the engines because you can immediately know what the order of the fuel flow itself is.

AUTHORS’ CONTRIBUTIONS

R.Z. contribute in carrying out all research procedures starting from designing, experimenting with making tools, analyzing data, and compiling scientific papers.

ACKNOWLEDGMENTS

This research was supported by first-level cadets of the Aircraft Engineering study program batch 8 of the Surabaya Aviation Polytechnic due to their contributions to the research experiment process.

REFERENCES
