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ABSTRACT 

Skin cancer is a type of cancer that can lead to death. The mortality rate from this disease is high. Detecting the disease 

at an early stage is essential to prevent the worst impact. However, detection by a dermatologist is time-consuming and 

costly. Computer Aided Detection (CAD) systems are that aid dermatologists in the understanding of medical images. 

Deep learning strategies are repeatedly employed in CAD systems. Yolo is one of the well-known deep learning models 

used to solve detection cases for small, medium, and large objects. In this study, we evaluate the performance of Yolov8 

for skin cancer detection considering three head-layers on the HAM10000 dataset. Experimental results show that the 

head layers with large object paths produce the best mAP and significant speed compared to medium and small. With 

these results, it can be considered as a reference in future research that using the big object detection path to detect skin 

cancer at an early stage is recommended. 
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1. INTRODUCTION 
The skin has a greater disease risk as the organ with 

the largest and outermost human body area. One of the 
causes is a lack of hygiene and intensive exposure to the 
sun's ultraviolet rays. However, humans frequently 
miscalculate the diseases on the skin, even skin cancer. 
In the early symptoms, detecting that the marks or dots 
on the skin are cancer seeds is challenging. In addition, 
skin cancer is also one of the diseases that spread very 
quickly in the body. Moreover, in the worst conditions, 
skin diseases can cause death for sufferers. So, to 
minimize this risk, it is necessary to detect cancer early. 
Dermatologists conduct this detection by visual 
observation and lab tests. However, this comes with a 
time-consuming and high cost. Furthermore, the efficacy 
of detection results is far from satisfactory, exclusively 
achieving 25% [1].  

To overcome these problems, researchers had been 
developed the skin cancer detection using computer 
vision and artificial intelligence [2]–[8]. Several studies 
consider a dermoscopy modality [9], the others utilize a 
histopathology modality [10], [11] and a few using 
infrared modality in their proposed methods [12]–[15]. 
Dermoscopy images are more widely used compared to 
other modalities [16]–[19].   

Convolutional Neural Networks (CNN) and their 
variations are commonly considered as skin cancer 
detection approaches [5], [6], [8], [20]. These CNN 
algorithms generally can be briefly categorized into two 
specific classes: two-step and one-stage methods [21]. 
Two-step object detection algorithms generate regions to 
acquire pre-selected boxes and utilise instance regression 
and classification with border positioning via CNNs. 
[21]. Several models were widely considered the two-
steps, i.e., R-CNNs[22], Fast-CNNs[23], and Faster R-
CNNs [24]. The advantages of these methods are high 
accuracy performance in the detection object. However, 
these models produce inefficient time, memory, and 
process [25]. On the other hand, the one-step models 
utilize the backbone feature extraction network to 
directly encounter and classify the target. In the literature, 
there are several model detections, i.e., Single-Shot 
multibox Detector (SSD) [27], CenterNet [28], and You-
Only-Look-Once (YOLO) [26]. The advantages of these 
models are low memory dependence and fast results [25]. 
However, the main limitations are prone to false 
detection and missing detection. 

Yolov8 has three detection paths in the head layer. 
Each paths have a different pixel size. Therefore, by 
default, YoloV8 can detect small, medium, and large 
objects. The object's size is based on the ratio of the 
object to the image pixel size. P. Hidayatullah et al., in 
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2022, proposed detecting sperm using only small object 
paths in detecting sperm movement. It is because the size 
of the sperm is tiny but has a vast number in an image. 
The results showed that Yolov5 could work better than a 
combination of detection paths [29]. Based on their 
results, in this article we employ the latest version of 
Yolo to detect skin cancer lesion images. However, as 
explained earlier, this skin cancer lesion image has more 
complex challenges, such as: difficult to distinguish 
lesion and background, various size of cancer lesion, high 
similarity inter and intra class, and other distracting 
objects (reeds, bubbles, rulers, paper edges).      

In this study, the authors present a comparison 
performance of Yolov8’s head-layers for early skin 
cancer detection though the following substantial 
contributions: 

(1) Modify Yolov8’s head-layers based on object 
detection paths (small, medium, and big). 

(2) Annotation skin lesion from HAM10000 dataset. 

(3) Performing transfer learning and fine-tuning by 
unfreezing the ten last layers of Yolov8’s backbone. 

The remainder of this paper is outlined as follows: 
Introduction described in Section 1. Section 2 explained 
our proposed model and how to evaluate the 
performance. Results and discussion are 
comprehensively discussed in the Section 3. To conclude, 
we summarize our work in section 4. 

2. METHODS 
In this section we describe our research 

methodology. In detail, our research steps start from data 
collection and selection, followed by image label 
annotation, split data (train, valid, and test), model 
training, model evaluation, model test, performance 
analysis. Figure 1 describes our research methodology.  

2.1. Dataset 
In the data collection and selection step, we chose the 

HAM10000 dataset. This dataset has the challenge of 
class imbalance. Of the 7 skin cancer disease classes, 
Nevus is the class with the most instances. Thus, we 
selected 1000 images only. Next, we annotated the 
HAM10000 dataset images using the labelimg python 
library. We annotated the image lesions ourselves, based 
on the cancer class. Based on the lesions we encountered, 
we had a little difficulty annotating due to the almost 
equal brightness and luminance of some images between 
the lesion and the background. In addition, based on our 
observations, there are similarities in shape, color, and 
texture of both intra- and extra-class lesions. 
Furthermore, the size of the lesions in each image also 
varied. However, as a percentage, there are more lesions 
with a large object ratio compared to the background. The 
annotation results are saved using Yolo format and in the 

form of text files. An example of a lesion image with the 
annotations we have done is shown in Figure 2. 

Furthermore, we partitioned the data into training, 
validation, and test data with a composition of 70:20:10. 
From a total of 4333 data, we split the training data into 
3030, validation data into 862, and test data into 441 
images. The details of the data division composition are 
shown in Table 1.  

2.2. Yolov8 Modification 
As the latest generation of the Yolo family launched 

by ultralytics in January 2023 [30], version 8 has 
advantages over previous generations. However, for 
particular cases, the performance of Yolov8 needs to be 
modified to get better performance. One such approach is 
to modify the head layer [29]. 

There are three detection paths in the head layer of 
the Yolov8 architecture: small, medium, and large. To 
determine the performance of each of these paths, we 
modified the Yolov8 architecture in the head section by 
separating each path, and then compared the performance 
of the object detection paths. Each head layer 
modification is presented in Figure 3. 

 

Figure 1. Our proposed methodology 

 

Figure 2. Annotated image manually as melanoma 
using labelimg python library 
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2.3. Training Yolov8 Modification 
Once the data is ready for use, the next step is training 

the Yolov8 model. We divide the training in 4 stages 
according to the head-layer evaluation in Yolov8 i.e.: 
small, medium, big, and combination. During the training 
process we set the hyperparameters. We set the batch size 
to 16, epoch 100, pretrained model weights as transfer 
learning option with the final 10-layer unfrozen. 

We used Google Colabs Pro as the service to train the 
model. The runtime we run has device specifications of 
V100 GPU with High-RAM speed, 12.7 GB RAM 

capacity, and multiple CPUs. On the software side, we 
employ python version 3.10, torch version 2.1 from the 
Yolov8 installation process using ultralytics library. 

2.4. Evaluation indicators 
The mean average precision (mAP) is the primary 

evaluation metric to estimate the detection performance 
of each path detection in the head-layer modification of 
Yolov8. This metric is calculated from the intersection 
over the union (IoU) threshold, explained in Eq. 1. IoU 
can determine correct and incorrect detection. The valid 
detection condition is retrieved, while IoU of the box 

Table 1. Dataset distribution (train, valid, and test) 

Disease/Class Total Train Val Test 

Akiec 327 228 65 34 

Bcc 514 359 102 53 

Bkl 1099 769 219 111 

Df 119 83 23 13 

Mel 1119 783 223 113 

Nev 1012 708 202 102 

Vasc 143 100 28 15 

Total 4333 3030 862 441 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3. Modification head-layer of YoloV8 (a) Small path object detection, (b) Medium path object detection, and 

(c) Big path object detection 
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obtained by the model is greater than the threshold. In 
more detail, mAP is the average of all 10 IoU in the range 
of 0.50 to 0.95 with an increment value of 0.05 for all 
specific categories, which is used as the primary metric 
for ranking. In addition, basic metric Precision and Recall 
are calculated first before getting the IoU value. These 
metrics are represented in Eq. 2 and Eq. 3. The mAP is 
formulated in Eq. 4. 
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3. RESULTS AND DISCUSSION 

3.1. Small object path performance 
The experimental results for small object path are 

described in Table 2. The model produces the worst 
performance than others. The small object path was failed 
detecting the lesion. It caused the ratio of lesion object 
for dermoscopy images mostly is big and medium size 
based on human visualization. The best result is obtained 
from nevus categories. 

Table 2. Small path modification performance 

Class Prec Rec mAP50 mAP50-95 

Akiec 0.094 0.015 0.043 0.011 

Bcc 0.665 0.461 0.515 0.179 

Bkl 0.361 0.290 0.258 0.112 

Df 0.449 0.304 0.304 0.146 

Mel 0.398 0.302 0.271 0.126 

Nev 0.683 0.587 0.634 0.294 

Vasc 0.575 0.357 0.445 0.251 

AVG 0.461 0.331 0.353 0.160 

3.2. Medium object path performance 
This modification obtained better results than small 

path. Detail performance is recorded in Table 3. YoloV8 
with medium path can detect the lesion with no detection 
ratio smaller than small path for the test data.  

Table 3. Medium path modification performance 

Class Prec Rec mAP50 mAP50-95 

Akiec 0.411 0.397 0.403 0.241 

Bcc 0.532 0.716 0.599 0.321 

Bkl 0.411 0.727 0.567 0.374 

Df 0.552 0.376 0.408 0.248 

Mel 0.482 0.858 0.685 0.523 

Nev 0.731 0.817 0.881 0.607 

Vasc 0.609 0.500 0.682 0.454 

AVG 0.533 0.627 0.604 0.395 

3.3. Big object path performance 
The best result obtained for Yolov8 head-layer 

modification obtained from the big path object detection. 
Entire class detection performance illustrated in Table 4. 
The nevus class detection was the best which achieve 
more mAP50 more than 90%. The worst results were 
obtained from Df class with mAP50 only 39.4%. 
Moreover, the ratio of no detection result is significantly 
improved than small and medium path detection for the 
training, validating, and testing data, respectively.  

Table 4. Big path modification performance 

Class Prec Rec mAP50 mAP50-95 

Akiec 0.759 0.554 0.694 0.409 

Bcc 0.730 0.797 0.830 0.455 

Bkl 0.754 0.695 0.780 0.510 

Df 0.434 0.522 0.546 0.393 

Mel 0.666 0.942 0.897 0.691 

Nev 0.945 0.769 0.933 0.639 

Vasc 1.000 0.675 0.889 0.565 

AVG 0.755 0.708 0.796 0.523 

3.4. Performance comparison 
Based on the results, the big object path of the head 

layer of Yolov8 obtained the best performance compared 
to small and medium. However, the performance of the 
big object path in mAP50-95 is lighter than the 
combination of all object paths of Yolov8. Fortunately, 
training time processing is significantly reduced than 
path detection in small, medium, and all, respectively. 
These results prove our hypothesis that we can select the 
specific object path of YoloV8 to detect the object in skin 
lesion based on the visual observation that most skin 
lesions are big ratio in dermoscopy images. This 
technique provides comparable detection performance to 
all path detection. The performance of time-processing 
and mAP are illustrated in Table 5.  

Table 5. Time-consuming and mAP training comparison 

Path Time (hours) mAP50 mAP50-95 

Small 1.171 0.353 0.160 

Medium 1.229 0.604 0.395 

Big 0.598 0.796 0.523 

All 0.828 0.818 0.547 

 

3.5. Lesion detection performance 
This subsection provides an example of skin lesion 

detection for dermoscopy images. Figure 4 demonstrates 
the skin lesion detection using big path detection. For 
example, we present the Bkl, Mel, and Nev classes, 
which are valid and invalid detection (No detection 
results). 
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3.4. Limitations 
The most challenging in this study is the 

heterogeneity of skin lesions in size, color, texture, and 
noise, both intra and extra classes. The best performance 
of mAP50-95 values less than 55% indicates that the 
study needs to be improved. As previously mentioned, 
the annotation process was conducted by ourselves, with 
minimal knowledge about skin cancer. It might generate 
the invalid lesion detection processed by the system. 
However, selecting the path detection in the head layer 
speeds up the detection process. 

For further study, we can involve dermatologists to 
annotate the skin lesion for improved performance. In 
addition, we need to modify the Yolov8 architecture from 
the backbone, neck, and head layer to increase the 
detection performance [31]. Moreover, ensemble model 
could be considered to improve the model performance 
[32]. 

4. CONCLUSION 
Skin cancer detection from the earlier stage utilizing 

Yolov8 could help the dermatologist diagnose. 
Experimental results demonstrated that modification 
Yolov8 in the head-layer considered a big path 
outperformed that of vanilla Yolov8 and other head-layer 
path detection, such as small and medium. The small path 
provided the worst performance, followed by the medium 
path, and the combination of all paths was second-best. 
Furthermore, separating the path detection in head-layer 
significantly speed-up the whole process time, training, 
validating, and testing, respectively. However, compared 
with other researches our proposed performance of mAP 
value is unsatisfactory. It might be caused by poor 
annotation process.  

Further study, we need to refine the annotating skin 
lesion by assigning a dermatologist to end this issue. 
Moreover, Other modifications to the yolov8 architecture 
can be made to the backbone or neck layers for better 
feature extraction from Yolov8. These can also be done 
by adding layers, changing the backbone, ensemble two 
or more architectures, or even reducing layers indicated 
not to affect performance.   

AUTHORS’ CONTRIBUTIONS 

DS: conceptualization, methodology, investigation, 
data curation, writing, and editing; OY: supervision, 
resources, proofreading. 

REFERENCES 

[1] S. Maurya, S. Tiwari, M. C. Mothukuri, C. 
M. Tangeda, R. N. S. Nandigam, and D. C. 
Addagiri, “A review on recent 
developments in cancer detection using 
Machine Learning and Deep Learning 
models,” Biomedical Signal Processing and 
Control, vol. 80. Elsevier Ltd, Feb. 01, 
2023. doi: 10.1016/j.bspc.2022.104398. 

[2] M. K. Hasan, M. A. Ahamad, C. H. Yap, 
and G. Yang, “A survey, review, and future 
trends of skin lesion segmentation and 
classification,” Computers in Biology and 
Medicine, vol. 155. Elsevier Ltd, Mar. 01, 
2023. doi: 
10.1016/j.compbiomed.2023.106624. 

[3] Shubhasis Khanra, M. Kuila, S. Patra, R. 
Saha, and K. G. Dhal, “Survey on 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Lesion detection for Bkl, Mel, and Nev, respectively. (a),(b), and (c) No detection results; (d), 
(e), and (f) Valid detection results 



1041 

 

 

Computational Techniques for Pigmented 
Skin Lesion Segmentation,” Optical 
Memory and Neural Networks (Information 
Optics), vol. 31, no. 4, pp. 333–366, Dec. 
2022, doi: 10.3103/S1060992X2204004X. 

[4] A. R. H. Ali, J. Li, and G. Yang, 
“Automating the ABCD Rule for 
Melanoma Detection: A Survey,” IEEE 
Access, vol. 8. Institute of Electrical and 
Electronics Engineers Inc., pp. 83333–
83346, 2020. doi: 
10.1109/ACCESS.2020.2991034. 

[5] M. Zafar, M. I. Sharif, M. I. Sharif, S. 
Kadry, S. A. C. Bukhari, and H. T. Rauf, 
“Skin Lesion Analysis and Cancer 
Detection Based on Machine/Deep 
Learning Techniques: A Comprehensive 
Survey,” Life, vol. 13, no. 1. MDPI, Jan. 01, 
2023. doi: 10.3390/life13010146. 

[6] A. Adegun and S. Viriri, “Deep learning 
techniques for skin lesion analysis and 
melanoma cancer detection: a survey of 
state-of-the-art,” Artif Intell Rev, vol. 54, 
no. 2, pp. 811–841, Feb. 2021, doi: 
10.1007/s10462-020-09865-y. 

[7] B. Zolfaghari, L. Mirsadeghi, K. Bibak, and 
K. Kavousi, “Cancer Prognosis and 
Diagnosis Methods Based on Ensemble 
Learning,” ACM Comput Surv, vol. 55, no. 
12, pp. 1–34, Dec. 2023, doi: 
10.1145/3580218. 

[8] J. P. Jeyakumar, A. Jude, A. G. Priya, and J. 
Hemanth, “A Survey on Computer-Aided 
Intelligent Methods to Identify and Classify 
Skin Cancer,” Informatics, vol. 9, no. 4. 
MDPI, Dec. 01, 2022. doi: 
10.3390/informatics9040099. 

[9] U. B. Korkut, Ö. B. Gökturk, and O. Yıldız, 
“Makine Öğrenmesi ile Bitki 
Hastalıklarının Tespiti Detection of Plant 
Disease by Machine Learning,” in 26th 
Signal Processing and Communications 
Applications Conference (SIU), IEEE, 
2018. 

[10] P. Xie, K. Zuo, Y. Zhang, F. Li, M. Yin, 
and K. Lu, “Interpretable Classification 
from Skin Cancer Histology Slides Using 

Deep Learning: A Retrospective 
Multicenter Study.” 

[11] Y. Q. Jiang et al., “Recognizing basal cell 
carcinoma on smartphone-captured digital 
histopathology images with a deep neural 
network,” British Journal of Dermatology, 
vol. 182, no. 3, pp. 754–762, Mar. 2020, 
doi: 10.1111/bjd.18026. 

[12] G. Nasreen, K. Haneef, M. Tamoor, and A. 
Irshad, “Review: a comparative study of 
state-of-the-art skin image segmentation 
techniques with CNN,” Multimed Tools 
Appl, 2022, doi: 10.1007/s11042-022-
13756-5. 

[13] H. Li, Y. Pan, J. Zhao, and L. Zhang, “Skin 
disease diagnosis with deep learning: A 
review,” Neurocomputing, vol. 464, pp. 
364–393, Nov. 2021, doi: 
10.1016/j.neucom.2021.08.096. 

[14] Y. Wu, B. Chen, A. Zeng, D. Pan, R. 
Wang, and S. Zhao, “Skin Cancer 
Classification With Deep Learning: A 
Systematic Review,” Frontiers in 
Oncology, vol. 12. Frontiers Media S.A., 
Jul. 13, 2022. doi: 
10.3389/fonc.2022.893972. 

[15] A. Victor, B. S. Gandhi, M. R. Ghalib, and 
A. M. Jerlin, “A Review on Skin Cancer 
Detection and Classification using Infrared 
images,” International Journal of 
Engineering Trends and Technology, vol. 
70, no. 4. Seventh Sense Research Group, 
pp. 403–417, Apr. 01, 2022. doi: 
10.14445/22315381/IJETT-V70I4P235. 

[16] D. Painuli, S. Bhardwaj, and U. köse, 
“Recent advancement in cancer diagnosis 
using machine learning and deep learning 
techniques: A comprehensive review,” 
Computers in Biology and Medicine, vol. 
146. Elsevier Ltd, Jul. 01, 2022. doi: 
10.1016/j.compbiomed.2022.105580. 

[17] J. Li, J. Chen, Y. Tang, C. Wang, B. A. 
Landman, and S. K. Zhou, “Transforming 
medical imaging with Transformers? A 
comparative review of key properties, 
current progresses, and future 
perspectives,” Med Image Anal, vol. 85, p. 



1042 

 

 

102762, Apr. 2023, doi: 
10.1016/j.media.2023.102762. 

[18] A. Mosquera-Zamudio et al., “Deep 
Learning for Skin Melanocytic Tumors in 
Whole-Slide Images: A Systematic 
Review,” Cancers, vol. 15, no. 1. MDPI, 
Jan. 01, 2023. doi: 
10.3390/cancers15010042. 

[19] F. Grignaffini et al., “Machine Learning 
Approaches for Skin Cancer Classification 
from Dermoscopic Images: A Systematic 
Review,” Algorithms, vol. 15, no. 11. 
MDPI, Nov. 01, 2022. doi: 
10.3390/a15110438. 

[20] S. Q. Gilani and O. Marques, “Skin lesion 
analysis using generative adversarial 
networks: a review,” Multimed Tools Appl, 
Jan. 2023, doi: 10.1007/s11042-022-14267-
z. 

[21] K. Zhao, R. Lu, S. Wang, X. Yang, Q. Li, 
and J. Fan, “ST-YOLOA: a Swin-
transformer-based YOLO model with an 
attention mechanism for SAR ship 
detection under complex background,” 
Front Neurorobot, vol. 17, 2023, doi: 
10.3389/fnbot.2023.1170163. 

[22] R. Girshick, J. Donahue, T. Darrell, and J. 
Malik, “Rich feature hierarchies for 
accurate object detection and semantic 
segmentation,” in Proceedings of the IEEE 
Computer Society Conference on Computer 
Vision and Pattern Recognition, IEEE 
Computer Society, Sep. 2014, pp. 580–587. 
doi: 10.1109/CVPR.2014.81. 

[23] R. Girshick, “Fast R-CNN,” in 2015 IEEE 
International Conference on Computer 
Vision (ICCV), IEEE, Dec. 2015, pp. 1440–
1448. doi: 10.1109/ICCV.2015.169. 

[24] S. Ren, K. He, R. Girshick, and J. Sun, 
“Faster R-CNN: Towards Real-Time Object 
Detection with Region Proposal Networks.” 
[Online]. Available: https://github.com/ 

[25] A. Baccouche, B. Garcia-Zapirain, Y. 
Zheng, and A. S. Elmaghraby, “Early 
detection and classification of abnormality 
in prior mammograms using image-to-

image translation and YOLO techniques,” 
Comput Methods Programs Biomed, vol. 
221, Jun. 2022, doi: 
10.1016/j.cmpb.2022.106884. 

[26] J. Redmon, S. Divvala, R. Girshick, and A. 
Farhadi, “You Only Look Once: Unified, 
Real-Time Object Detection,” Jun. 2015, 
[Online]. Available: 
http://arxiv.org/abs/1506.02640 

[27] W. Liu et al., “SSD: Single Shot MultiBox 
Detector,” Dec. 2015, doi: 10.1007/978-3-
319-46448-0_2. 

[28] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, 
and Q. Tian, “CenterNet: Keypoint triplets 
for object detection,” in Proceedings of the 
IEEE International Conference on 
Computer Vision, Institute of Electrical and 
Electronics Engineers Inc., Oct. 2019, pp. 
6568–6577. doi: 
10.1109/ICCV.2019.00667. 

[29] P. Hidayatullah et al., “DeepSperm: A 
robust and real-time bull sperm-cell 
detection in densely populated semen 
videos,” Comput Methods Programs 
Biomed, vol. 209, Sep. 2021, doi: 
10.1016/j.cmpb.2021.106302. 

[30] J. Terven and D. Cordova-Esparza, “A 
Comprehensive Review of YOLO: From 
YOLOv1 and Beyond,” Apr. 2023, 
[Online]. Available: 
http://arxiv.org/abs/2304.00501 

[31] E. Prasetyo, N. Suciati, and C. Fatichah, 
“Yolov4-tiny with wing convolution layer 
for detecting fish body part,” Comput 
Electron Agric, vol. 198, Jul. 2022, doi: 
10.1016/j.compag.2022.107023. 

[32] D. Sutaji and O. Yıldız, “LEMOXINET: 
Lite ensemble MobileNetV2 and Xception 
models to predict plant disease,” Ecol 
Inform, vol. 70, Sep. 2022, doi: 
10.1016/j.ecoinf.2022.101698. 

  


